Development of a Classification Framework for Construction Personnel’s Safety Behavior Based on Machine Learning
نویسندگان
چکیده
Different sets of drivers underlie different safety behaviors, and uncovering such complex patterns helps formulate targeted measures to cultivate behaviors. Machine learning can explore among behavioral data. This paper aims develop a classification framework for construction personnel’s behaviors with machine algorithms, including logistics regression (LR), support vector (SVM), random forest (RF), categorical boosting (CatBoost). The has three steps, i.e., data collection preprocessing, modeling algorithm implementation, optimal model acquisition. For illustrative purposes, five common sample Hong Kong-based personnel are used validate the framework. To achieve high performance, this employed combinative strategy, consisting feature selection, synthetic minority over-sampling technique (SMOTE), one-hot encoding, standard scaler classifiers classify multi-objective slime mould (MOSMA) optimize parameters in classifiers. Results suggest that strategy CatBoost–MOSMA achieves highest performance maximum average scores, area under curve receiver characteristic operator (AUC) ranging from 0.84 0.92, accuracy 0.80 0.86, F1-score 0.79 0.86. From model, unique set important features was identified each behavior, ten out 46 input indicators were found all Based on findings, study advocates using future behavior research makes concrete suggestions
منابع مشابه
application of upfc based on svpwm for power quality improvement
در سالهای اخیر،اختلالات کیفیت توان مهمترین موضوع می باشد که محققان زیادی را برای پیدا کردن راه حلی برای حل آن علاقه مند ساخته است.امروزه کیفیت توان در سیستم قدرت برای مراکز صنعتی،تجاری وکاربردهای بیمارستانی مسئله مهمی می باشد.مشکل ولتاژمثل شرایط افت ولتاژواضافه جریان ناشی از اتصال کوتاه مدار یا وقوع خطا در سیستم بیشتر مورد توجه می باشد. برای مطالعه افت ولتاژ واضافه جریان،محققان زیادی کار کرده ...
15 صفحه اولBody Mass Index Classification based on Facial Features using Machine Learning Algorithms for utilizing in Telemedicine
Background and Objectives: Due to the impact of controlling BMI on life, BMI classification based on facial features can be used for developing Telemedicine systems and eliminating the limitations of measuring tools, especially for paralyzed people. So that physicians can help people online during the Covid-19 pandemic. Method: In this study, new features and some previous work features were e...
متن کاملa framework for identifying and prioritizing factors affecting customers’ online shopping behavior in iran
the purpose of this study is identifying effective factors which make customers shop online in iran and investigating the importance of discovered factors in online customers’ decision. in the identifying phase, to discover the factors affecting online shopping behavior of customers in iran, the derived reference model summarizing antecedents of online shopping proposed by change et al. was us...
15 صفحه اولFramework Development for Construction Safety Visualization
......................................................................................................... iii ACKNOWLEDGMENTS ...................................................................................... iv LIST OF FIGURES ............................................................................................. viii CHAPTER 1 ...........................................................
متن کاملdevelopment and implementation of an optimized control strategy for induction machine in an electric vehicle
in the area of automotive engineering there is a tendency to more electrification of power train. in this work control of an induction machine for the application of electric vehicle is investigated. through the changing operating point of the machine, adapting the rotor magnetization current seems to be useful to increase the machines efficiency. in the literature there are many approaches wh...
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Buildings
سال: 2022
ISSN: ['2075-5309']
DOI: https://doi.org/10.3390/buildings13010043